Elevated Atherosclerosis-Related Gene Expression, Monocyte Activation and Microparticle-Release Are Related to Increased Lipoprotein-Associated Oxidative Stress in Familial Hypercholesterolemia

نویسندگان

  • Morten Hjuler Nielsen
  • Helle Irvine
  • Simon Vedel
  • Bent Raungaard
  • Henning Beck-Nielsen
  • Aase Handberg
چکیده

OBJECTIVE Animal and in vitro studies have suggested that hypercholesterolemia and increased oxidative stress predisposes to monocyte activation and enhanced accumulation of oxidized LDL cholesterol (oxLDL-C) through a CD36-dependent mechanism. The aim of this study was to investigate the hypothesis that elevated oxLDL-C induce proinflammatory monocytes and increased release of monocyte-derived microparticles (MMPs), as well as up-regulation of CD36, chemokine receptors and proinflammatory factors through CD36-dependent pathways and that this is associated with accelerated atherosclerosis in subjects with heterozygous familial hypercholesterolemia (FH), in particular in the presence of Achilles tendon xanthomas (ATX). APPROACH AND RESULTS We studied thirty FH subjects with and without ATX and twenty-three healthy control subjects. Intima-media thickness (IMT) and Achilles tendon (AT) thickness were measured by ultrasonography. Monocyte classification and MMP analysis were performed by flow cytometry. Monocyte expression of genes involved in atherosclerosis was determined by quantitative PCR. IMT and oxLDL-C were increased in FH subjects, especially in the presence of ATX. In addition, FH subjects had elevated proportions of intermediate CD14++CD16+ monocytes and higher circulating MMP levels. Stepwise linear regression identified oxLDL-C, gender and intermediate monocytes as predictors of MMPs. Monocyte expression of pro-atherogenic and pro-inflammatory genes regulated by oxLDL-C-CD36 interaction was increased in FH, especially in ATX+ subjects. Monocyte chemokine receptor CX3CR1 was identified as an independent contributor to IMT. CONCLUSIONS Our data support that lipoprotein-associated oxidative stress is involved in accelerated atherosclerosis in FH, particularly in the presence of ATX, by inducing pro-inflammatory monocytes and increased release of MMPs along with elevated monocyte expression of oxLDL-C-induced atherosclerosis-related genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin.

Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small...

متن کامل

The Impact of Lipoprotein-Associated Oxidative Stress on Cell-Specific Microvesicle Release in Patients with Familial Hypercholesterolemia

Objective. Microvesicles (MVs) are small cell-derived particles shed upon activation. Familial hypercholesterolemia (FH) particularly when associated with Achilles tendon xanthomas (ATX) predisposes to atherosclerosis, possibly through oxLDL-C interaction with the CD36 receptor. To investigate the hypothesis that MVs derived from cells involved in atherosclerosis are increased in FH and that CD...

متن کامل

Homocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells

Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...

متن کامل

Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks

Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...

متن کامل

Familial hypercholesterolemia: a case report

Abstract Familial hypercholesterolemia (FH) is a hereditary dislipidemia. Patients present with extremely high level of low-density lipoprotein cholesterol (LDL-C), which is due to mutation in the gene of LDL receptor. Homozygous patients (HoFH) whose incidence is 1 in 1.000.000 are at high risk of premature aortic valve stenosis, and coronary artery atherosclerosis. In homozygous individual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015